Data panel adalah gabungan antara
data runtut waktu (time series) dan data silang (cross section). Data runtut
waktu biasanya meliputi satu objek/individu (misalnya harga saham, kurs mata
uang, SBI, atau tingkat inflasi), tetapi meliputi beberapa periode (bisa
harian, bulanan, kuartalan, atau tahunan). Data silang terdiri dari atas
beberapa atau banyak objek, sering disebut responden (misalnya perusahaan)
dengan beberapa jenis data (misalnya; laba, biaya iklan, laba ditahan, dan
tingkat investasi) dalam suatu periode waktu tertentu.
Menurut
Hsiao (1992), keuntungan-keuntungan menggunakan analisis regresi data panel
adalah:
- Memperoleh hasil estimasi yang lebih baik karena seiring dengan peningkatan jumlah observasi yang otomatis berimplikasi pada peningkatan derajat kebebasan (degree of freedom);
- Menghindari kesalahan penghilangan variable (omitted variable problem).
Menurut
Baltagi (1995; hlm. 4-7), keuntungan-keuntungan menggunakan
analisis regresi data panel antara lain:
analisis regresi data panel antara lain:
- Mengatasi masalah heterogenitas individu (individual heterogeneity);
- Memberikan data yang lebih informatif, mengurangi masalah kolinieritas pada variable, mengatasi masalah penghilangan variabel (ommited variabel), dan menghasilkan degree of freedom yang lebih besar;
- Mempelajari perubahan yang bersifat dinamis (dynamics of adjustment);
- Dapat mengidentifikasi dan menghitung efek yang tidak dapat dilakukan pada analisis time series atau cross section murni;
- Dapat mengurangi bias dalam pengestimasian karena data cukup banyak.
Keunggulan
regresi data panel menurut Wibisono (2005) antara lain:
- Panel data mampu memperhitungkan heterogenitas individu secara ekspilisit dengan mengizinkan variabel spesifik individu;
- Kemampuan mengontrol heterogenitas ini selanjutnya menjadikan data panel dapat digunakan untuk menguji dan membangun model perilaku lebih kompleks.
- Data panel mendasarkan diri pada observasi cross-section yang berulang-ulang (time series), sehingga metode data panel cocok digunakan sebagai study of dynamic adjustment.
- Tingginya jumlah observasi memiliki implikasi pada data yang lebih informative, lebih variatif, dan kolinieritas (multiko) antara data semakin berkurang, dan derajat kebebasan (degree of freedom/df) lebih tinggi sehingga dapat diperoleh hasil estimasi yang lebih efisien.
- Data panel dapat digunakan untuk mempelajari model-model perilaku yang kompleks.
- Data panel dapat digunakan untuk meminimalkan bias yang mungkin ditimbulkan oleh agregasi data individu.
Dengan keunggulan tersebut maka implikasi pada tidak harus dilakukannya
pengujian asumsi klasik dalam model data panel (Verbeek, 2000; Gujarati, 2006;
Wibisono, 2005; Aulia; 2004, dalam Shochrul R, Ajija, dkk. 2011).
A.
Model Regresi Data Panel
Model regresi data panel yang
umumnya digunakan terdapat tiga macam, yaitu Commond Effects Model, Fixed
Effects Model (Model Efek Tetap – MET), dan Random Effects Model (Model
Efek Random – MER).
·
Commond
Effects Model
Merupakan pendekatan model data
panel yang paling sederhana karena hanya dengan mengkombinasikan data time
series dan cross section dalam bentuk pool, dan menggunakan
teknik kuadrat terkecil atau least square untuk mengestimasi
koefisiennya. Pada model ini tidak diperhatikan dimensi waktu maupun individu,
sehingga diasumsikan bahwa prilaku individu tidak berbeda dalam berbagai kurun
waktu.
Persamaan regresinya dapat
dituliskan sebagai berikut:
untuk i = 1, 2, …, N dan t = 1, 2, …,T, dimana N adalah jumlah unit/individu cross section dan T adalah jumlah periode waktunya. Dari commond effects model ini akan dapat dihasilkan N+T persamaan, yaitu sebanyak T persamaan cross section dan sebanyak N persamaan time series.
·
Fixed
Effects Model
Asumsi pembuatan model yang
menghasilkan intersep konstan untuk setiap individu (i) dan waktu (t) dianggap
kurang realistik sehingga dibutuhkan model yang lebih dapat menangkap perbedaan
tersebut. Model efek tetap (fixed effects), model ini mengasumsikan
bahwa perbedaan antar individu dapat diakomodasi dari perbedaan intersepnya.
Untuk mengestimasi model Fixed Effects dengan intersep berbeda antar
individu, maka digunakan teknik variable dummy. Model estimasi ini sering juga
disebut dengan teknik Least Squares Dummy Variable (LSDV).
Persamaan regresinya adalah sebagai
berikut:
untuk i = 1,2, …, N dan t = 1,2, …, T, dimana N adalah jumlah unit/individu cross section dan T adalah jumlah periode waktunya.
·
Random
Effects Model
Di dalam mengestimasi data panel
dengan model Fixed Effects melalui teknik LSDV menunjukkan
ketidakpastian model yang digunakan. Untuk mengatasi masalah ini kita bias
menggunakan variable residual yang dikenal sebagai model Random Effects.
Pada model ini, akan dipilih estimasi data panel dimana residual mungkin saling
berhubungan antar waktu dan antar individu. Oleh karena itu, pada model ini
diasumsikan bahwa ada perbedaan intersep untuk setiap individu dan intersep
tersebut merupakan variable random atau stakastik. Sehingga dalam model ini
terdapat dua komponen residual, yaitu residual secara menyeluruh, yang
merupakan kombinasi time series dan cross section, dan residual
secara individu yang merupakan karakteristik random dari observasi unit
ke-i dan tetap sepanjang waktu.
Adapun persamaan regresinya adalah
sebagai berikut:
Ada beberapa asumsi yang harus
dipenuhi dalam model efek random. Secara matematis, asumsi tersebut terdiri
dari:
Hal ini berarti bahwa komponen error
tidak berkorelasi satu sama lain dan tidak ada autokorelasi antara cross
section dan time series. metode OLS tidak bias digunakan untuk
mendapatkan estimator yang efisien. Metode yang tepat untuk mengestimasi model random
effects adalah Generalized Least Squares (GLS) dengan asumsi
homoskedastik dan tidak ada cross sectional correlation. GLS merupakan
OLS dengan transformasi variabel yang memenuhi asumsi standar dari OLS.
B.
Pemilihan
Model Regresi Data Panel
Dari ketiga model yang telah
dijelaskan sebelumnya, maka selanjutnya akan ditentukan model yang paling tepat
untuk mengestimasi parameter regresi data panel. Secara informal, ada beberapa
pertimbangan untuk menentukan model estimasi terbaik dari ketiga model estimasi
data panel sebagaimana telah dijelaskan di atas. Nachrowi dan Usman (2006)
menyatakan bahwa jika data panel yang dimiliki mempunyai waktu (T) lebih besar
dibandingkan dengan jumlah individu (N) maka disarankan untuk menggunakan model
fixed effects, sedangkan apabila jumlah data panel yang dimiliki
mempunyai jumlah waktu (T) lebih kecil disbanding jumlah individu (N) maka
disarankan menggunakan model random effects.
Secara formal terdapat tiga
pengujian yang digunakan untuk memilih model regresi data panel terbaik antara
model commond effects, model fixed effects, atau model random
effectss, yaitu uji F yang digunakan untuk memilih antara model commond
effectss atau model fixed effects; uji Lagrange Multiplier (LM)
untuk memilih antara model commond effects atau model random effects;
dan uji Hausman untuk memilih antara model fixed effects atau
model random effects. Adapun penjelasan mengenai ketiga pengujian
tersebut di atas adalah sebagai berikut:
·
Pengujian
Signifikansi Model Fixed Effects
Signifikansi model fixed effects dapat
dilakukan dengan uji statistik F. Uji F digunakan untuk mengetahui apakah
teknik regresi data panel dengan fixed effects lebih baik dari model
regresi data panel tanpa variabel dummy (common effects) dengan melihat residual
sum of squares (RSS). Hipotesis nol (H0) yang digunakan adalah
bahwa intersep dan slope adalah sama.
Adapun uji F statistiknya adalah
sebagai berikut:
dengan n = jumlah individu; T = jumlah periode waktu; K = banyaknya parameter dalam model fixed effects; dan masing-masing merupakan residual sum of squares teknik tanpa variabel dummy dan teknik fixed effects dengan variabel dummy. Nilai statistik F akan mengikuti distribusi statistik F dengan derajat bebas (dof) sebesar/sebanyak n-1 untuk numerator dan sebesar nT-k untuk denumerator. Jika nilai statistik F lebih besar dari nilai F table pada tingkat signifikansi tertentu, maka hipotesis nol akan ditolak, yang berarti asumsi koefisien intersep dan slope adalah sama tidak berlaku, sehingga teknik regresi data panel dengan fixed effects lebih baik dari model regresi data panel tanpa variabel dummy atau common effects.
·
Pengujian
Signifikansi Model Random Effects
Untuk mengetahui apakah model Random
Effects lebih baik daripada model common effects maka dapat
menggunakan uji Lagrange Multiplier (LM) yang dikembangkan oleh
Bruesch-Pagan. Pengujian ini didasarkan pada nilai residual dari model common
effects.Hipoesis yang diajukan adalah intersep bukan merupakan variabel
random atau stokastik. Dengan kata lain varian dari residual pada persamaan
(3-3) bernilai nol.
Adapun nilai statistik LM
dihitung berdasarkan formula sebagai berikut:
di mana n = jumlah individu; T = jumlah periode waktu dan adalah residual metode common effects (OLS). Uji LM ini didasarkan pada distribusi chi-square dengan derajat bebas sebesar 1. Jika hasil statistik LM lebih besar dari nilai kritis statistik chi-square, maka hipotesis nol akan ditolak, yang berarti estimasi yang tepat untuk regresi data panel adalah metode random effects daripada metode common effects.
·
Pengujian
Signifikansi Model Fixed Effects atau Model Random Effects
Untuk mengetahui apakah model fixed
effect lebih baik dari model random effect, digunakan uji Hausman.
Dengan mengikuti kriteria Wald, nilai statistik Hausman ini akan mengikuti
distribusi chi-square sebagai berikut:
Statistik uji Hausman ini mengikuti disribusi statistik chi-square dengan derajat bebas sebanyak jumlah variabel independen (p). Hipotesis nol ditolak jika nilai statistik Hausman lebih besar daripada nilai kritis statistik chi-square . Hal ini berarti bahwa model yang tepat untuk regresi data panel adalah model Fixed Effects daripada model Random Effects.
·
Pemilihan
Model Estimator Terbaik dari Model Regresi Data Panel Terpilih
Untuk mendapatkan estimator terbaik
dari model regresi data panel terpilih, dilakukan pengujian terhadap struktur
kovarians dari residual model terpilih. Terdapat beberapa metode yang sesuai
dengan asumsi pada stuktur varians-covarians tersebut, yaitu struktur
homoskedastik, asumsi struktur heteroskedastik dan tidak ada korelasi antar
individu (cross sectional correlation), asumsi heteroskedastik dan ada cross
sectional correlation (Seemingly Uncorrelated Regression/SUR), dan asumsi
adanya autokorelasi antar waktu pada error term.
·
Pemilihan
Estimator Asumsi Homoskedastis atau Heteroskedastis
Pada pengujian ini, hipotesis nol (H0)
yang digunakan adalah bahwa struktur varians-covarians residual bersifat
homoskedastik. Sementara hipotesis alternatifnya adalah struktur
varians-covarians residual bersifat heteroskedastik. Secara matematis,
statistik uji yang digunakan dapat dirumuskan sebagai berikut:
di mana T adalah jumlah observasi, n adalah jumlah individu, sigma kuadrat i adalah varians residual persamaan ke-i pada kondisi homoskedastik, dan sigma kuadrat adalah sum square residual persamaan systempada kondisi homoskedasik.Statistik uji LM ini mengikuti distribusi statistik chi-square dengan derajat bebas sebanyak n-1. Jika nilai statistik LM lebih besar dari nilai kritis statistik chi-square, maka hipotesis nol akan ditolak, yang berarti struktur varians-covarians residual bersifat homoskedastik. Prosedur yang digunakan dalam pengolahan dengan Eviews adalah no-weight.
·
Pemilihan
Estimator Asumsi Heteroskedastis Tanpa Korelasi Antar Individu atau
Heteroskedastis Ada Korelasi Antar Individu.
Pengujian ini dilakukan apabila
hasil pengujian LM pada poin (a) menunjukkan bahwa struktur varians-covarians
residual bersifat heteroskedastik. Pada pengujian ini, hipotesis nol (H0)
yang digunakan adalah bahwa struktur varians-kovarians residual bersifat
heteroskedastik dan tidak ada korelasi antar individu (non cross sectional
correlation). Sementara hipotesis alternatifnya (H1) adalah
bahwa struktur varians-kovarians residual bersifat heteroskedastik dan ada ada
korelasi antar individu (cross sectional correlation) atau Seemingly
Uncorrelated Regression/SUR.
Secara sistematis, statistik uji
yang digunakan dapat dirumuskan sebagai berikut:
dimana r-square adalah residual correlation coefficient. Statistik uji ini mengikuti distribusi statistik chi-square dengan derajat bebas sebanyak n(n-1)/2. Jika nilai statistik observasi lebih besar dari nilai kritis statistik chi-square, maka hipotesis nol akan ditolak, yang berarti struktur varian-kovarians residual bersifat heteroskedastik dan ada korelasi antar individu (cross sectional correlation) atau Seemingly Uncorrelated Regression/SUR. Dengan demikian prosedur yang digunakan dalam Eviews adalah cross-section SUR sedangkan jika hipotesis nol tidak ditolak, prosedur yang digunakan adalah cross-section weights.
Untuk
mengestimasi parameter dalam model dapat menggunakan bantuan software EViews
6.0
Solar companies are at the forefront of the clean energy revolution. Solar company Los angeles
ReplyDelete